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Abstract  The summer rainfall over the middle-lower 
reaches of the Yangtze River valley (YRSR) has been 
estimated with a multi-linear regression model using 
principal atmospheric modes derived from a 500 hPa 
geopotential height and a 700 hPa zonal vapor flux over 
the domain of East Asia and the West Pacific. The model 
was developed using data from 195892 and validated 
with an independent prediction from 19932008. The 
independent prediction was efficient in predicting the 
YRSR with a correlation coefficient of 0.72 and a relative 
root mean square error of 18%. The downscaling model 
was applied to two general circulation models (GCMs) of 
Flexible Global Ocean-Atmosphere-Land System Model 
(FGOALS) and Geophysical Fluid Dynamics Laboratory 
coupled climate model version 2.1 (GFDL-CM2.1) to 
project rainfall for present and future climate under B1 
and A1B emission scenarios. The downscaled results pro-
vided a closer representation of the observation compared 
to the raw models in the present climate. In addition, 
compared to the inconsistent prediction directly from dif-
ferent GCMs, the downscaled results provided a consistent 
projection for this half-century, which indicated a clear 
increase in the YRSR. Under the B1 emission scenario, 
the rainfall could increase by an average of 11.9% until 
201125 and 17.2% until 203650 from the current state; 
under the A1B emission scenario, rainfall could increase 
by an average of 15.5% until 201125 and 25.3% until 
203650 from the current state. Moreover, the increased 
rate was faster in the following decade (201125) than the 
latter of this half-century (203650) under both emissions. 
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1  Introduction  

In past decades, the global climate has undergone rapid 
changes (IPCC, 2007). The projection of future climate 
and its associated influence has attracted a growing inter-
est worldwide. The general circulation models (GCMs) 
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are good tools used to simulate large-scale, upper-layer 
climatology features, but they fail to reproduce surface 
parameters on regional and sub-grid scales; however, the 
later has more of a social importance. Many approaches 
have been developed because of the demand of providing 
regional climate change estimations for both impact stud-
ies and policy making; the statistical downscaling tech-
nique is one of the most useful (Fowler et al., 2007; Wilby 
and Wigley, 1997). It has been successfully applied to 
project temperature, precipitation, and other parameters 
on various timescales (Goodess and Palutikof, 1998; 
Hughes and Guttorp, 1994; Li and Smith, 2009).  

Recently, the statistical downscaling technique has 
been investigated and applied in China. For example, Chen 
et al. (2003) utilized GCM-outputs to predict monthly 
rainfall, and Chu et al. (2008) employed the Statistical 
DownScaling Method (SDSM) to predict daily rainfall 
over the Haihe River basin. In addition, Zhu et al. (2008) 
developed a downscaling model for the Asia-Pacific 
summer monsoon rainfall with a Singular Value Decom-
position (SVD) method and Fan (2009) constructed step-
wise regression model to project the temperature over all 
of China. Huang et al. (2010) estimated future scenarios 
of annual rainfall in the Yangtze River basin with SDSM. 
However, a statistically downscaled projection of the 
summer rainfall over the middle-lower reaches of the 
Yangtze River (YRSR) has not been developed. The mid-
dle-lower reaches of the Yangtze River, located within the 
eastern Asian subtropical Monsoon domain, and its sum-
mer rainfall is strongly affected by the Eastern Asian 
Summer Monsoon (EASM), which shows pronounced 
inter-annual and decadal variability. Because the EASM 
has weakened during the past 50 years (Zhou et al., 2009), 
the associated monsoon rainfall has shown decadal varia-
tion (Zhai et al., 2004). Therefore, a reliable projection of 
the YRSR for the future is of great concern and was the 
main topic in this study.  

The aim of this study was the following: 1) to build a 
statistical downscaling model for the YRSR using the 
multi-linear regression (MLR) method and principal 
components (PCs) of large-scale atmospheric parameters; 
and 2) to apply the downscaling model to GCM-genera-  
tion as well as to project future rainfall under different 
emission scenarios. The framework of this study was or-
ganized as follows. Sections 2 and 3 introduce the data 
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and methodology utilized. The performance of the down-
scaling model is presented in Section 4. Section 5 de-
scribes the application of the downscaling model to GCM 
generation. Finally, Section 6 consists of the summary and 
discussion.    

2  Data 

The precipitation data were extracted from China’s 
160-station monthly rainfall dataset for the period 1958
2008, which were provided by the China Meteorological 
Administration. The total rainfall during JuneAugust 
(JJA) averaged over 22 stations (Fig. 1) within the region 
of 2832°N and east of 106°E is presented as the predic-
tand. 

Previous studies have indicated the necessity of in-
cluding humidity-related parameters to predict precipita-
tion (Benestad, 2001; Charles et al., 1999; Von Storch et 
al., 1993). Therefore, sea level pressure (SLP) and 500 
hPa geopotential height (H5) and humidity-related pa-
rameters, that is, zonal or meridional vapor flux at 850 
hPa (ZV85, MV85) or 700 hPa (ZV7, MV7), were em-
ployed as potential predictor parameters. The atmospheric 
data were extracted from the reanalysis dataset on a 2.5°  
2.5° grid, which was provided by the National Center for 
Environment PredictionNational Center for Atmospheric 
Research (NCEPNCAR).  

The GCM data were derived from two models of 
Flexible Global Ocean-Atmosphere-Land System Model 
(FGOALS) and Geophysical Fluid Dynamics Laboratory 
coupled climate model version 2.1 (GFDL-CM2.1), 
which participate in the World Climate Research Pro-
gramme’s (WCRP’s) Coupled Model Inter-comparison 
Project phase 3 (CMIP3) under the experiments of 20th 
century simulation (20c3m) and Special Report on Emis-
sion Scenarios B1 and A1B; they are available at the fol-
lowing website: http://www-pcmdi.llnl.gov/. Because the 
GCMs have different horizontal resolutions, raw GCMs 
outputs were interpolated to a resolution of 2.5°×2.5°, 

 

 
 

Figure 1   Twenty-two gauge stations were used to represent the re-
gion of middle-lower reaches of the Yangtze River (black dots) and three 
predictor domains (rectangles) were tested in this study. Please see the 
main text for details. 

which was the same as NCEP reanalysis data using the 
bi-linear interpolation method. 

3  The statistical downscaling scheme 

In this study, we utilized the MLR method to formulate 
the predictive equation. Firstly, Principal Component 
Analysis was performed on normalized atmospheric-para- 
meter data to derive the PCs as predictors. It was impor-
tant to select the correct number of PCs necessary to de-
scribe the rainfall time-series. To ensure the robustness of 
the selection, the leave-one-out cross-validation method 
(Stone, 1974) was introduced to hindcast the rainfall 
time-series. The root mean square error (RMSE) between 
the observed and cross-validation hindcasted rainfall was 
used to measure the performance of each of the PCs that 
was progressively added to the regression equation; a 
particular PC was added if it could consecutively reduce 
the RMSE value after being included, otherwise, it was 
excluded and the selection was terminated. In general, the 
first two or three PCs were sufficient to fit the YRSR 
variation.  

To determine the optimum predictor parameter and 
domain, various downscaling models developed using 
distinct predictor parameters over distinct domains were 
compared. In this paper, an exhaustive set of possible 
combinations of the considered predictor parameters was 
examined over three domains with different sizes. Each of 
the predictor parameter combinations consisted of a pres-
sure-related parameter (SLP or H5) and a humidity-  
related parameter (ZV85, MV85, ZV7, or MV7). Three 
trial domains of different spatial sizes are showed in Fig. 
1 as domain 1: 2040°N, 95125°E; domain 2: 1555°N, 
90130°E; and domain 3: 555°N, 80140°E. 

The whole data set was split into two periods, the 
training period (195892) and the test period (1993
2008). The downscaling model was fitted with an opti-
mum predictor parameter over an optimum domain over 
the training period; then, it was possible to make a predic-
tion from the 19932008 data to show its independent 
hindcast ability for YRSR. The correlation coefficient and 
RMSE between the downscaled and observed rainfall 
were used to measure the predictive skills. To quantify the 
degree of prediction uncertainty, a bootstrap sampling 
approach (Stine, 1985) was employed. The 95% confi-
dence intervals of independent predictions were obtained 
from the spread of 1000 bootstrap samples with random 
replacement.  

4  Downscaled results 

Using the training data from 195892, distinct statisti-
cal downscaling models were trained with different pre-
dictor parameters over different domains and they were 
evaluated by cross-validation. Figure 2 shows the per-
formances of various downscaling models measured by 
the RMSE and the correlation coefficient between the 
observation and the cross-validated hindcasts over the 
time period of 195892. It seemed that the model trained 
using H5+ZV7 within domain 1 performed best with a 
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Figure 2  (a) RMSE and (b) correlation coefficient between the observed and cross-validation hindcasted rainfall from distinct downscaling models 
trained using different parameter combinations (x-coordinate labeled) over different domains of domain 1 (2040°N, 95125°E; blue), domain 2 
(1555°N, 90130°E; red), and domain 3 (555°N, 80140°E; green). 

 
minimal RMSE value of 78.9 mm and the maximal cor-
relation coefficient of 0.69; thus, H5+ZV7 was deter-
mined as the final predictor parameter and domain 1 was 
the final predictor domain. 

The downscaling model was trained using the observed 
H5+ZV7 within domain 1 from 195892. In the regres-
sion equation, only two leading PCs were selected be-
cause the regression equation, which contained the first 
two PCs, achieved the minimum RMSE value of 77.04 
mm in the cross-validation, indicating there was no need 
to include the other PCs in the equation. Figures 3af 
show the spatial modes and the associated normalized 
time series, which individually explained 55.3% and 
15.9% of the total variance, respectively. The first PC 
primarily showed the decadal variation, while the second 
PC primarily showed the inter-annual variation; they were 
both significantly related to the meridional displacement 
of western North Pacific Subtropical High ridge with cor-
relation coefficients of 0.46 and 0.52 calculated by 
detrended data (significant at the 0.05 level). In the 700 
hPa zonal vapor flux field, there were anomalous east-
ward vapor transfer responses over the middle-lower 
reaches of the Yangtze River valley in the two modes, 

which were responsible for the anomalous wet summer 
there. 

Using the two leading PCs, the regression equation was 
formulated in the following form: 

Y=483.42+44.88PC1+69.13PC2,          (1) 
where Y is the YRSR series from 195892 and PC1 and 
PC2 are the normalized series of the first two PCs. The 
regression coefficients were both significant at the 0.05 
level. 

The test data were projected onto the two leading 
modes, obtaining the associated PCs time-series from 
19932008. Using Eq. (1), the YRSR from 19932008 
was hindcasted. Figure 3g shows the observed and down-
scaled rainfall from both the training period and inde-
pendent validation period; the uncertainty of the 95% 
confidence intervals in terms of bootstrapping with pre-
dictions after 1992 are indicated by red dash lines. In 
general, the downscaling model provided a relatively ac-
curate representation of observations, even for the verifi-
cation period. The correlation coefficient and the ratio of 
RMSE to the climatology between the downscaled and 
observed rainfall were 0.76 and 14% in training period as 
well as 0.72 and 18% in validation period, respectively. 
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Figure 3  The first (left column) and second (right column) leading modes of the combined parameter fields of (a, b) 500 hPa geopotential height, (c, 
d) 700 hPa zonal vapor flux, and (e, f) their associated normalized time-series; (g) The observed (black) and downscaled (green) rainfall (mm) during 
the training period of 195892 and the independent test period from 19932008. The red dashed lines indicate the 95% confidence intervals for inde-
pendent prediction based on 1000 bootstrap samples. The blank in (c, d) indicates the surface of the Tibet Platean.    

 
5  Application to GCM-generation  

The downscaling model was applied to the GCM- 
generated predictors for both the current and future cli-
mate. Before application, we updated the downscaling 
model with the entire data set from 19582008. The two 
leading modes, derived using the entire data set, were 
almost the same as the modes derived using the training 
data with spatial correlation coefficients of 0.99 for H5 
and 0.96 for the ZV7 in Mode 1 and 0.97 for H5 and 0.96 
for ZV7 in Mode 2, respectively. The regression equation 
was refitted over the whole period with the associated two 
leading PCs, which was applied to the GCM-generation to 
make projections. 

Among all the GCMs participating in the WCRP’s 
CMIP3, an evaluation was performed for the simulated 
two leading modes of H5 and ZV7 over domain 1 (20
40°N, 95125°E) from 195899. The FGOALS and 
GFDL-CM2.1 exhibited better simulation skills than the 
others. Figure 4 shows the simulated two leading modes 
from 195899 using the FGOALS and GFDL-CM2.1. 
The spatial correlation coefficients between the observed 
leading modes and FGOALS (GFDL-CM2.1) simulated 
modes were 0.71 (0.77) for H5 and 0.39 (0.25) for ZV7 in 
Mode 1 and 0.94 (0.97) for H5 and 0.8 (0.68) for ZV7 in 
Mode 2, respectively. Thus, the outputs from the FGOALS 
and GFDL-CM2.1 were employed. 

To ensure that the downscaled values from the GCM- 
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Figure 4  The (a, b) first and (c, d) second modes of combined parameter fields of 500 hPa geopotential height (left column) and 700 hPa zonal 
vapor flux (right column) calculated using FGOALS simulation over 195899. (eh) are the same as (ad), but for GFDL-CM2.1. The blank indi-
cates the surface of the Tibet Platean. 

 
outputs were free from the GCM’s systematical bias, the 
GCM-simulated data were normalized by its mean and 
standard deviation over the base period of 195899. Then 
the normalized data were projected onto the observed two 
leading modes to obtain the GCM-generated PCs. Figure 
5 compares the observed and GCMs directly predicted  
as well as the downscaled long-term-mean rainfall for the 
current (197099) and future climate (201125 and 
203650) under B1 and A1B emission scenarios. The 
downscaled value for the future was accompanied by 50% 
and 95% confidence intervals (horizontal lines in Fig. 4), 
which indicated the uncertainty associated with the down- 
scaling model as estimated by the bootstrap procedure. 
For present day predictions, the downscaled values in 

both cases showed smaller errors compared to the raw 
GCM simulations. For future projections, under the B1 
emission, FGOALS model directly projected a slow in-
crease in rainfall, opposite to GFDL-CM2.1 simulation; 
under the A1B emission, the two models projected a con-
sistent scenario of a slight increase from 201125, fol-
lowed by a slow decrease from 203650. In contrast, the 
downscaled results provided a consistent projection under 
both emissions, which indicated increasing rainfall this 
half century. Under the B1 emission, rainfall increased on 
average 11.9% until 201125 and 17.2% until 203650 
from the current state; under A1B emission, rainfall in-
creased 15.5% on average until 201125 and 25.3% until 
203650 from the current state. In addition, the A1B  
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Figure 5  Present (197099) and near future (201125 and 203650) rainfall under B1 and A1B emission scenarios from FGOALS and GFDL- 
CM2.1. Circles represent observation, triangles represent raw GCM-output, and crosses represent downscaled values. Boxes and error bars represent 
50% and 95% confidence intervals, respectively. 

 
emission seemed wetter than the B1 emission for the next 
40 years. Moreover, in both cases, the increasing rate was 
faster in the following decade (201125) than the latter of 
this half-century (203650) under both emission scenarios. 

6  Summary 

In this paper, a MLR downscaling model was devel-
oped, which linked YRSR with two principal atmospheric 
modes derived using 500 hPa geopotential height and 700 
hPa zonal vapor flux over the domain of East Asia and 
West Pacific. The independent validation from 1993 
2008 indicated that the MLR downscaling model had a 
relatively high hindcast capability for YRSR with a cor-
relation coefficient of 0.72.  

The downscaling model was then applied to the out-
puts of the FGOALS and the GFDL-CM2.1 models and 
projected the rainfall for both the current (197099) and 
near future (201125 and 203650) climate under B1 and 
A1B emission scenarios. For the current climate, the 
downscaled values in both cases showed smaller errors 
than the raw models. This superiority indicated that the 
downscaled predictions were more reliable for represent-
ing the present day climate, which implied a better repre-
sentation of the future climate. For the future climate, 

which was in contrast to the raw GCM simulation, the 
downscaled results provided consistent projections be-
tween different GCMs. This indicated a clear increase in 
the rainfall for this half-century; on average, the increase 
was larger under the A1B emission scenario vs. the B1 
emission scenario. Moreover, the increasing rate seemed 
faster in the following decade (201125) compared to the 
latter of this half-century (203650) under both emis-
sions.  

Like other statistical downscaling models, the under-
lying stationary hypothesis may be questionable. Previous 
studies have emphasized the importance of assessing the 
robustness of the relationship in the future (Paul et al., 
2008). We have performed the principal component 
analysis using model simulations from 200150 under B1 
and A1B emission scenarios. Figure 6 shows the simu-
lated two leading modes under the B1 emission scenario. 
Compared to the simulated leading modes under the cur-
rent state (195899), the dominant modes in the future 
were maintained, and the situation using the A1B emis-
sion scenario was the same (figure not shown). To some 
extent, it provided reliability to the downscaled projection 
for the near future. 

The reliability of the downscaled future projection was 
strongly dependent on the GCM’s simulation of predict- 
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Figure 6  The (a, b) first and (c, d) second modes of combined parameter fields of 500 hPa geopotential height (left column) and 700 hPa zonal 
vapor flux (right column) calculated using FGOALS generated from 200150 under the B1 emission scenario. (eh) are the same as (ad), but for 
GFDL-CM2.1. The blank indicates the surface of the Tibet Platean. 

 
ors. Although FGOALS and GFDL-CM2.1 were well 
simulation for the 500 hPa geopotential height and 700 
hPa zonal vapor flux fields over the East Asia and West 
Pacific domain in present climate, it could not ensure the 
reliability of simulation under future climate change con-
ditions. Therefore, caution should be used when inter-
preting the downscaled results for the future. A consistent 
projection from different kinds of downscaling models 
could provide increased reliability and confidence. More 
downscaled projections based on additional GCMs or the 
results from regional climate models are needed to sup-
port this projection and these will be performed in future 
work.  
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